Browsing by Author Dullin, Holger

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 20 of 24  next >
Issue DateTitleAuthor(s)Citation
2003Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water wavesDullin, Holger; Gottwald, Georg; Holm, Darryl D.; Mathematics & Statistics; Mathematics & StatisticsCamassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynamics Research, vol.33,(1),2003,pp 73-95
2012The degenerate C. Neumann system I: Symmetry reduction and convexityDullin, Holger; Hanssmann, Heinz; Mathematics & StatisticsThe degenerate C. Neumann system I: Symmetry reduction and convexity, Central European Journal of Mathematics, vol.10, 5, 2012,pp 1627-1654
2016The diver with a rotorBharadwaj, Sudarsh; Duignan, Nathan; Dullin, Holger; Leung, Karen; Tong, William; Aerospace Mech & Mtronic Eng; Mathematics & Statistics; Mathematics & Statistics; Aeronautical Engineering; Mathematics & StatisticsThe diver with a rotor, Indagationes Mathematicae, vol.27, 5, 2016,pp 1147-1161
2009Dullin and Waalkens Reply {to comment on "Non-uniqueness of the phase shift in central scattering due to monodromy"}Dullin, Holger; Waalkens, Holger; Mathematics & StatisticsDullin and Waalkens Reply {to comment on "Non-uniqueness of the phase shift in central scattering due to monodromy"}, Physical Review Letters, vol.102, N/A,pp 188902-1-188902-1
2010Dynamics near the p:-q resonanceDullin, Holger; Schmidt, Sven; Mathematics & StatisticsDynamics near the p:-q resonance, Physica D: Nonlinear Phenomena, vol.239, 19,pp 1884-1891
2012The Equilateral Pentagon at Zero Angular Momentum: Maximal Rotation through Optimal DeformationDullin, Holger; Tong, William; Mathematics & Statistics; Mathematics & StatisticsThe Equilateral Pentagon at Zero Angular Momentum: Maximal Rotation through Optimal Deformation, SIAM Journal on Applied Dynamical Systems, vol.11, 3, 2012,pp 963-987
2009Experimental demonstration of classical Hamiltonian monodromy in the 1:1:2 resonant elastic pendulumDullin, Holger; Fitch, N J; Lewandowski, H J; Parazzoli, L P; Weidner, C A; Mathematics & StatisticsExperimental demonstration of classical Hamiltonian monodromy in the 1:1:2 resonant elastic pendulum, Physical Review Letters, vol.103, N/A,pp 54-034301-4
2016Generating Hyperbolic Singularities in Semitoric Systems Via Hopf BifurcationsDullin, Holger; Pelayo, Alvaro; Mathematics & StatisticsGenerating Hyperbolic Singularities in Semitoric Systems Via Hopf Bifurcations, Journal of Nonlinear Science, vol.26, 3, 2016,pp 787-811
2013Geometric phase in divingDullin, Holger; Tong, William; Mathematics & Statistics; Mathematics & StatisticsGeometric phase in diving, Proceediings of the 1st Symposium for Researchers in Diving, vol.165 of Sportwissenschaft & Sportpraxis, 2013, pp. 24-29
2016Instability of equilibria for the two-dimensional euler equations on the torusDullin, Holger; Marangell, Robert; Worthington, Joachim; Mathematics & Statistics; Mathematics & Statistics; Mathematics & StatisticsInstability of equilibria for the two-dimensional euler equations on the torus, SIAM Journal on Applied Mathematics, vol.76, 4, 2016,pp 1446-1470
2013The Lie-Poisson structure of the reduced n-body problemDullin, Holger; Mathematics & StatisticsThe Lie-Poisson structure of the reduced n-body problem, Nonlinearity, vol.26, 6, 2013,pp 1565-1579
2015The Lie–Poisson structure of the symmetry reduced regularized n-body problemArunasalam, Suntharan; Dullin, Holger; Nguyen, Diana; Mathematics & Statistics; Mathematics & Statistics; Mathematics & StatisticsThe Lie–Poisson structure of the symmetry reduced regularized n-body problem, Journal of Physics A: Mathematical and Theoretical, vol.48, 6, 2015,pp 1-12
2017A new twisting somersault: 513XDDullin, Holger; Tong, William; Mathematics & Statistics; Mathematics & StatisticsA new twisting somersault: 513XD, Journal of Nonlinear Science, vol.27, Online July 2017, 2017,pp 2037-2061
2008Nonuniqueness of the phase shift in central scattering due to monodromyDullin, Holger; Waalkens, Holger; Mathematics & StatisticsNonuniqueness of the phase shift in central scattering due to monodromy, Physical Review Letters, vol.101, 7, 2008,pp 070405-1-070405-4
2004On Asymptotically Equivalent Shallow Water Wave EquationsDullin, Holger; Gottwald, Georg; Holm, Darryl D.; Mathematics & Statistics; Mathematics & StatisticsOn Asymptotically Equivalent Shallow Water Wave Equations, Physica D: Nonlinear Phenomena, vol.190,(1-2),2004,pp 1-14
2008On the analytic non-integrability of the rattleback problemDullin, Holger; Tsygvintsev, Alexei; Mathematics & StatisticsOn the analytic non-integrability of the rattleback problem, Universite Paul Sabatier. Faculte des Sciences. Annales: mathematiques, vol.17,(3),2008,pp 495-517
2009A Poincare section for the general heavy rigid bodyDullin, Holger; Richter, P. H.; Schmidt, Sven; Mathematics & StatisticsA Poincare section for the general heavy rigid body, SIAM Journal on Applied Dynamical Systems, vol.8,(1),2009,pp 371-389
2009Quadratic volume-preserving maps: Invariant Circles and BifurcationsDullin, Holger; Meiss, James D.; Mathematics & StatisticsQuadratic volume-preserving maps: Invariant Circles and Bifurcations, SIAM Journal on Applied Dynamical Systems, vol.8, 1, 2009,pp 76-128
2012Resonances and Twist in Volume-Preserving MappingsDullin, Holger; Meiss, James D.; Mathematics & StatisticsResonances and Twist in Volume-Preserving Mappings, SIAM Journal on Applied Dynamical Systems, vol.11, 1, 2012,pp 319-349
2013Semi-global symplectic invariants of the euler topDullin, Holger; Papadopoulos, George; Mathematics & Statistics; PhysicsSemi-global symplectic invariants of the euler top, Journal of Geometric Mechanics, vol.5, 2, 2013,pp 215-232